

Erudite Journal of Engineering Technology and Management Sciences

Vol. 1, No. 2, December, 2021, pp. 17-19

Journal homepage: http://www.ejetms.com

A Study on Effect of Compressive Strength of Ternary Blended Concrete using Metakoline and Nano Silica

Sai Karthik^{1*}, Jeremy Taylor¹

¹ Department of Structural Engineering and Environmental Engineering, RMIT University, Melbourne, Australia

Corresponding Author Email: saikarthik020@gmail.com

Received: 01 September 2021

Accepted: 12 November 2021

Keywords:

Metakolin, Nano Silica, cement replacement, Compressive strength, Water absorption.

ABSTRACT

Cement is one of the main component of the building materials, thus its demand is increasing day to day proportionately the emission of carbondioxde is also increasing. Inorder to overcome this, many alternatives are being used these days, one among them is pozzolonic cement which is made of mineral admixtures. Inorder to have a clear knowledge about the pozzolonic action a detailed study is made on the compressive strength of concrete when added with different admixtures. The admixtures used are Metakaolin and Nano silica.(NS) The control concrete is made of 15% of Metakaolin(MK) and the mixes were made by varying the percentage of Nano silica. The Nano silica is used in 0.5% and 1%. The strength are tested for 3rd,7th and 28th day. The mixes are also tested for its water absorption at the same intervals of 3rd,7th and 28th day.

1. INTRODUCTION

Concrete is a key component in the construction industry. Cement is an essential component of concrete. Portland cement demand is rising on a daily basis. Whereas the negative impact caused by carbon dioxide emissions from cement manufacture. It is related to the usage of fossil fuels, especially those used to create power during the cement making process. As a result, in order to minimize cement use, the use of pozzolana materials as a partial alternative for cement preparation is becoming more common. The use of pozzolanas in the production of concrete is regarded effective since it allows for a reduction in cement consumption while boosting the strength and water absorption capabilities of the concrete.

Cement is one of the key ingredients of concrete, and its principal hydration product, C-S-H, has a Nano structure. The quality of C-S-H gel determines the strength and water absorption qualities of concrete. One of the most significant components in improving the microstructure of concrete is silica. As a result, substantial study has been dedicated in recent years toward the performance of pozzolana concrete.

When employed as a partially replaced ingredient for cement in concrete, metakaolin combines with $\text{Ca}(\text{OH})_2$, one of the products of the hydration process, resulting in additive C-S-H gel and an enhancement in different strength qualities of concrete. It also lowers the permeability of hardened concrete. As a result, partially substituting Metakaolin for Portland cement not only decreases carbon dioxide emissions into the environment during cement manufacturing but also enhances the service life of structures [1-5].

The mechanical and water absorption characteristics of concrete are primarily determined by the hardened cement paste structure and the continuously growing paste-aggregate interface. Because of the increased silicon dioxide powder concentration, nano silica, a novel pozzolanic material created

artificially in the form of a water emulsion of Ultra Fine Amorphous Colloidal Silica (UFACS), has better characteristics than silica fume. The use of Nano Silica can increase the impermeability and strength of concrete. The current study attempted to evaluate the combined application of Metakaolin and Nano Silica on the performance of concrete [6-12].

2. OBJECTIVE

The main aim of the study is to obtain a comparative study of concrete influenced by various mineral admixture. Various properties of M30 Grade concrete is studied with different proportion of Nano silica. The control concrete is made up of 15% of metakaolin which is replaced by cement. The other specimens are prepared by replacing cement by 0.5% and 1% of Nano Silica and its compressive and water absorption test are conducted. Then the results are compared with the controlled concrete. The test is conducted on 3rd, 7th and 28th day respectively.

3. EXPERINMENTAL INVESTIGATION

3.1 Materials

In this study, Ordinary Portland cement of grade 43 is employed in accordance with IS standards. The cement has a specific gravity of 3.15. River sand (Zone I) from a nearby river that met IS specifications was utilized. It has a fineness modulus of 2.94 and a specific gravity of 2.6 according to the pycnometer test was used. Machine Crushed Aggregate in accordance with IS 383-1970 is used as coarse aggregates. The nominal sizes of the coarse aggregate used in this study were 20mm and 12mm. The specific gravity of coarse aggregate

was found to be 2.88. Metakaolin is a refined version of kaolin that has been calcined. The kaolin clay is burnt under precisely regulated circumstances to produce amorphous alumina silicate, which is reactive in concrete. Metakaolin particle size is finer than that of cement, making it an effective pore filler substance. Table 1 displays the metakaolin properties. Nano silica is a novel pozzolanic substance in the form of a colloidal water emulsion. It looks to be significantly superior to silica fume since it contains more powdered silica and has smaller spherical particles (1-50mm). In the current experiment, cement is substituted with 1%, 2%, and 3% of Nano Silica by weight. Table 2 shows the characteristics of Nano Silica. For casting and curing concrete test specimens, portable water is employed. The water utilized is free of turbidity and impurities, which can reduce the strength of concrete.

Table 1.	Properties and	d characteristic	of Metakaolin
Table 1.	T TODGI GO and	a Characteristic	or wictakaomi

S.No.	Characteristics	Actual Analysis Result
1	Silicon dioxide (Sio ₂₎	52-55%
2	Alumina(Al ₂ O ₃)	40-43%
3	Ferric oxide	<1
4	Bulkdensity	350gm/lit
5	Moisture	0.23%
6	Appearance	White Powder
7	PH	6.59

8	Residue on 325 Mesh	.1%
9	50% particles below	1.74 micron
10	Specific gravity	2.262

Table 2: Propoties and characteristic of Nano silica

S.No.	Characteristics	Actual Analysis	
		Result	
1	Nano solids	30-32%	
2	PH	9.0-10	
3	Specific Gravity	1.2-1.22	
4	Texture	White Milky	
		Liquid	
5	Dispersion	Water	

3.2 Concrete Mix Proportion

The impact of metakaolin, which partially substitutes cement, and the combination application of Metakaolin and Nano Silica, which partially replaces cement, on M30 grade concrete is explored in this experimental study. The design of a concrete mix of M30 grade was done in accordance with the Indian Standard code of Practice. The table below shows the various elements for one cubic metre of M30 grade concrete. Because colloidal Nano Silica is available, the amount of water necessary to make concrete is altered to account for the water available in colloidal Nano Silica. Table 3 shows the constituent quantities per cum of m30 grade concrete.

Table 3: Quantities of Ingredient per cum of M30 Grade Concrete

Concrete	Cement (kg)	Metakaolin (kg)	Colloidal Nano	Water(lit)		w/c	Fine Aggregate	Coarse Aggregate
	8)	(8)	Silica (kg)	In Nano silica	Added water		(kg)	(kg)
Control	328	58	0	0	135	0.4	728	1313
0.5%NS	326.1	58	1.9	1.3	133.7	0.4	728	1313
1%NS	324.14	58	3.86	2.66	132.34	0.4	728	1313

4. METHODOLOGY

Concrete test specimens are cubes sized 100mmx100mmx100mm were cast in order to perform compressive and water absorption tests. The compressive strength of concrete is determined by testing concrete cube specimens after 3,7,28 days of curing. At the same curing intervals, the cubes are also evaluated for water absorption capability.

5. EXPERIMENTAL RESULTS

5.1 Compressive strength

The compressive strength of M30 grade concrete was evaluated on concrete mixes with varying amounts of Nano silica and metakaolin during different curing times. Three specimens' results are used to get the average cube compressive strength. It may be concluded that the compressive strength of metakaolin-based concrete with Nano silica is greater than that of control concrete.

The variation of 3, 7, 28 days compressive strength of M30 grade concrete prepared with metakaolin and different

proportion of Nano silica are shown in the table and graph below. The compressive strength of concrete increases with increases in percentage of Nano silica. This is due to availability of sufficient quantity of C-S-H gel. The test results are given in figure 1.

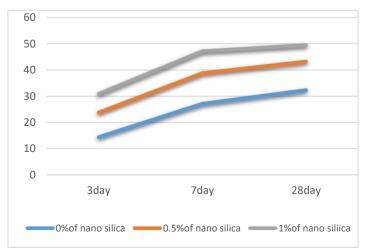


Figure 1: Variation of Compressive Strength

The 3, 7, 28 cube compressive strength of M30 grade control concrete is $14.36 \text{ N/}mm^2$, $27.1 \text{ N/}mm^2$, $33\text{N/}mm^2$ respectively. Whereas the mean compressive strength is reached almost in the seventh day. Thus the concrete serves as a High Strength Concrete.

5.2 Water absoprtion

The effect of change of variation of water absorption values of cubes at the intervals of 3,7,28 days are tested. It is noted that the absorption rate decreases with increase of Nano silica. The addition of 0.5% of Nano Silica reduces the absorption rate to nearly 7%. The increase in the strength was found to be 30% by the addition of 0.5% of NS and about 50% by the use of 1% of NS. By addition of 1% of Nano silica again the rate reduces to nearly half the percentage.

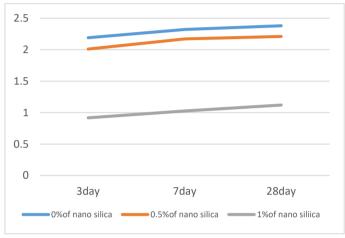


Figure 2: Variation of Water absorption

6. CONCLUSION

Controlled concrete of M30 grade is cast, and tests on standard concrete specimens are performed to determine the concrete's water absorption capacity and compressive strength. The results are then compared with concrete containing metakaolin and different proportions of Nano silica, such as 0%, 0.50%, and 1% as cement replacement. The tests were conducted on concrete specimens containing metakaolin at 15% as control concrete and its compressive strength and water absorption capacity are calculated. Also the test were conducted on the specimens containing 15% of Metakaolin and 0.5% and 1% of Nano silica. Similarly those compressive strength and water absorption capacity are compared with normal concrete, it is found that the compressive strength is found to increase in such a way that the specimen reaches its mean strength at the 7th day. The increase in the strength was found to be 30% by the addition of 0.5% of NS and about 50%by the use of 1% of NS, thus serving as the high strength concrete. Hence it can be concluded that, the various strength properties concrete can be improved by the addition of 15% of Metakaolin and 0.5% and 1% of Nano silica.

REFERENCES

[1] Aiswarya, S., Prince Arulraj, G., & Dilip, C. (2013). A review on use of metakaolin in concrete. *Engineering Science and Technology*, *3*(3), 592-597.

- [2] Patil, S. N., Gupta, A. K., & Deshpande, S. S. (2013). Metakaolin-Pozzolanic material for cement in high strength concrete. In *Proceedings of the 2nd International Conference on Emerging Trends in Engineering (SICETE'13)*, pp. 46-49.
- [3] Kaur, K., Singh, J., & Singh, D. (2015). Determination of optimum percentage of metakaolin by compressive strength and XRD analysis. *International Journal of Scientific Engineering and Applied Science*, *1*, 134-139. IS:12269 1987, Specifications for 53 grade OPC.
- [4] IS 2386 (Part 1, 3 & 4) 1963, Method of testing of aggregates for concrete.
- [5] IS 10262-1982 Recommended guidelines for mix design.
- [6] IS:516-1959, Methods of tests for Strength of concrete.
- [7] Reddy, A. N., Priyanka, S. P., & Mounika, P. (2019). The effect of nano silica on mechanica 1 properties of concrete. *Internat. Res. J. Applied Sci.*, 1, 36-40.
- [8] Reddy, A. N. (2014). Rajesh, Properties of Green Cement Concrete with Alternative Cementicious Binders. *International Journal of Engineering Sciences & Research Technology*, 3(8), 156-167.
- [9] Reddy, P. N., Jindal, B. B., Kavyateja, B. V., & Reddy, A. N. (2020). Strength enhancement of concrete incorporating alcofine and SNF based admixture. Advances in concrete construction, 9(4), 345-354.
- [10] Reddy, A. N. (2019). An experimental study on effect of Colloidal Nano-Silica on tetranary blended concrete. *Advances in concrete construction*, 7(2), 107.
- [11] Reddy, A. N., Mounika, P., & Moulika, R. (2018). Study on effect of alcofine and nano silica on properties of concrete-A review. *International Journal of Civil Engineering and Technology (IJCIET)*, 9(13), 559-565.
- [12] Reddy, N., Naveen, K., & Rani, N. S. (2015). Use the Treated domestic waste water as a mixing water in cement mortar. *International Journal of Engg. Science Invention*, 23-31.

CC-BY

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read) which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.