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 ABSTRACT 

 Deep learning has transformed several industries, including computer vision and natural 

language processing, as well as autonomous systems and robotics. However, due to restricted 

processing power and memory restrictions, deploying deep learning models on resource-

constrained embedded devices presents various obstacles. This review paper delves into 

recent advancements in VLSI (Very Large Scale Integration) designs aimed at addressing 

these problems and enabling fast deep learning inference on embedded devices. The primary 

focus of this study is on new VLSI designs and approaches for optimizing deep learning 

execution on embedded systems that have developed in recent years. These include hardware-

friendly quantization methods, model compression techniques, and custom hardware 

accelerators tailored for specific deep learning tasks. They also investigate the use of sparsity 

and efficient memory management to minimize the memory footprint, allowing deep learning 

to be performed in resource-constrained environments. The significance of energy-efficient 

design and low-power solutions for embedded systems is highlighted. Edge AI and IoT are 

developing phenomena, and VLSI designs are evolving to enable these applications. The goal 

of this review is to provide a helpful resource for implementing deep learning on embedded 

systems by demonstrating the most recent breakthroughs in VLSI designs to allow fast and 

scalable deep learning inference. 
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1. INTRODUCTION 

Deep learning has experienced remarkable success in various 

domains, ranging from computer vision and natural language 

processing to autonomous systems and robotics [1]. However, 

deploying deep learning models on embedded systems, 

characterized by limited computational power and constrained 

memory resources, presents a set of formidable challenges. 

These challenges include the need for efficient hardware 

architectures capable of executing complex deep learning 

computations within the constraints of embedded 

environments [2]. In response to these challenges, recent years 

have witnessed a surge in research and development of VLSI 

(Very Large Scale Integration) architectures tailored for deep 

learning applications in embedded systems. This surge is 

driven by the increasing demand for intelligent, real-time 

processing in devices such as edge AI platforms and IoT 

(Internet of Things) endpoints. The most recent advancements 

in VLSI architectures designed specifically to address the 

unique requirements of deep learning on embedded systems 

delve into the core components of deep learning models, such 

as convolutional neural networks (CNNs) and recurrent neural 

networks (RNNs), and examine the hardware resources they 

demand [3]. Additionally, provide an overview of 

conventional hardware accelerators, including GPUs and 

TPUs, and the constraints they encounter when adapted to 

embedded applications. Primary focus the review is on the 

innovative solutions that have emerged to tackle these 

constraints. And it cover topics such as hardware-friendly 

quantization techniques, model compression methods, and the 

development of custom hardware accelerators finely tuned for 

particular deep learning tasks. Also explore strategies that 

reduce memory usage and leverage sparsity, enabling efficient 

execution in resource-constrained environments. Efficiency in 

power consumption is paramount in embedded systems, and 

the importance of energy-efficient design and low-power 

strategies in this context. Moreover, how these VLSI 

architectures align with emerging trends, like edge AI and IoT, 

and adapt to cater to their unique demands. analysis of the 

various VLSI-based solutions identify potential avenues for 

future research and development in this rapidly evolving field 

serve as a comprehensive resource for researchers and 

engineers interested in the deployment of deep learning on 

embedded systems, presenting the latest developments in 

VLSI architectures to facilitate efficient and scalable deep 

learning inference [5]. 

2. Deep Learning Fundamentals 

2.1 Overview of Deep Learning Models: 

Deep learning models, such as Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs), 

have gained widespread popularity due to their ability to 
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automatically learn and extract features from data. CNNs are 

particularly effective for image recognition and computer 

vision tasks, while RNNs excel in sequence data analysis, 

making them ideal for natural language processing and speech 

recognition [6]. 

2.2 Hardware Requirements for Deep Learning: 

Deep learning models are highly compute-intensive, requiring 

massive parallel processing capabilities. GPUs (Graphics 

Processing Units) have played a pivotal role in accelerating 

deep learning tasks, thanks to their ability to handle parallel 

computations efficiently. In recent years, TPUs (Tensor 

Processing Units) have emerged as specialized hardware 

designed explicitly for deep learning, offering even greater 

performance [7]. 

2.3 Challenges in Deploying Deep Learning on Embedded 

Systems: 

Deploying deep learning on embedded systems presents 

several challenges. Embedded systems often have limited 

computational power, memory constraints, and energy 

consumption concerns. This creates a need for specialized 

VLSI architectures to optimize deep learning inference in 

these resource-constrained environments [8]. 

3. Hardware Accelerators for Deep Learning 

3.1 GPUs and TPUs: Traditional Hardware Accelerators: 

GPUs (Graphics Processing Units) have been a cornerstone in 

accelerating deep learning tasks due to their highly parallel 

architecture, making them well-suited for training and 

inference tasks. TPUs (Tensor Processing Units) are custom-

designed hardware accelerators created by Google, optimized 

specifically for machine learning workloads, and offer 

substantial performance gains in deep learning tasks [9]. 

 

Fig. 1: Hardware Accelerator architecture The CPU 'offloads' 

its task to the FPGA, which performs the action and returns 

the result to the CPU in a expedited manner 

3.2 Limitations of Traditional Accelerators in Embedded 

Systems: 

While GPUs and TPUs excel in terms of performance, they 

may not be well-suited for embedded systems. These 

traditional hardware accelerators tend to be power-hungry, 

bulky, and often overprovisioned for the requirements of 

embedded applications. Additionally, they may not efficiently 

exploit the unique characteristics of embedded environments 

[10]. 

4. Hardware-Friendly Quantization Methods 

4.1 Fixed-Point and Dynamic Fixed-Point Quantization: 

Fixed-point quantization is a technique that reduces the 

precision of deep learning models by representing weights and 

activations as fixed-point numbers [11]. Dynamic fixed-point 

quantization allows for the adaptation of the quantization 

scheme based on data statistics, offering a balance between 

precision and efficiency. 

4.2 Binary and Ternary Quantization: 

Binary quantization represents weights and activations as 

binary values (1-bit precision), while ternary quantization 

extends this concept to use three values (-1, 0, 1) to further 

reduce precision [12]. These methods significantly reduce the 

memory and computational demands of deep learning models. 

4.3 Mixed-Precision Quantization: 

Mixed-precision quantization combines different precision 

levels for different parts of the deep learning model, allowing 

for flexibility in resource allocation. For example, it may use 

higher precision for critical layers and lower precision for less 

critical ones, optimizing the trade-off between accuracy and 

resource usage [13]. 

5. Model Compression Techniques 

5.1 Pruning and Weight Sharing: 

Pruning involves identifying and removing redundant or less 

important weights and neurons in a deep learning model, 

reducing its size and computational requirements [14]. Weight 

sharing goes a step further by reusing shared weights for 

multiple connections, which results in further compression and 

efficiency gains. 

5.2 Knowledge Distillation: 

Knowledge distillation is a process where a smaller model, 

known as the student, is trained to mimic the behavior of a 

larger, pre-trained model, known as the teacher. This transfer 

of knowledge results in a compact model with reduced 

computational requirements while maintaining performance. 

5.3 Compact Architectures (e.g., MobileNet, SqueezeNet): 

Compact architectures, exemplified by models like MobileNet 

and SqueezeNet, are designed from the ground up to be 

efficient in terms of computational and memory requirements. 

These models often employ techniques such as depth-wise 

separable convolutions and aggressive feature map reduction 

to achieve high performance with reduced parameters [15]. 

6. Custom Hardware Accelerators 

6.1 Design Considerations: 

When designing custom hardware accelerators for deep 

learning, several key considerations come into play. These 

include the choice of hardware platform, architectural 

decisions, power efficiency, memory optimization, and the 

need to tailor the hardware to specific deep learning tasks [16]. 

6.2 FPGA-based Accelerators: 

Field-Programmable Gate Arrays (FPGAs) are versatile 

hardware platforms that can be reconfigured to accelerate 

specific deep learning workloads [17]. They offer flexibility 
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and programmability, making them suitable for a wide range 

of applications. 

6.3 ASIC-based Accelerators: 

Application-Specific Integrated Circuits (ASICs) are custom-

designed hardware accelerators optimized for specific deep 

learning tasks. They offer high performance and energy 

efficiency, but they lack the flexibility of FPGAs [18]. 

 

Fig. 2: The architecture of the ASIC-based accelerator. 

6.4 Domain-Specific Accelerators (e.g., Edge TPUs): 

Domain-specific accelerators, like Google's Edge TPUs, are 

designed for particular tasks within deep learning and AI, such 

as image processing and neural network inference. These 

accelerators are tailored for edge and IoT applications [19]. 

7. Memory Management and Sparsity 

7.1 Efficient Memory Usage: 

Efficient memory usage in deep learning involves optimizing 

how data is stored and accessed during training and inference. 

Techniques such as data batching, memory pooling, and data 

reuse can significantly reduce memory consumption [20]. 

7.2 Leveraging Sparsity in Deep Learning: 

Sparsity in deep learning refers to scenarios where a 

significant portion of weights or activations in a model are 

zero. Leveraging sparsity can lead to substantial memory and 

computational savings. Techniques like structured sparsity 

and pruning are discussed [21]. 
 

7.3 Techniques for Reducing Memory Footprint: 

Various techniques are available for reducing the memory 

footprint of deep learning models. These include weight 

quantization, weight sharing, compression algorithms, and 

efficient model serialization formats. Each technique has its 

strengths and limitations [22].  

8. Energy-Efficient Design 

8.1 Low-Power Strategies for Embedded Systems: 

Low-power strategies for embedded systems involve a range 

of techniques, including voltage scaling, clock gating, and 

dynamic voltage and frequency scaling (DVFS). These 

strategies are essential for reducing power consumption while 

maintaining adequate performance [23]. 

8.2 Trade-offs Between Performance and Power 

Consumption: 

Designing energy-efficient embedded systems often requires 

striking a balance between performance and power 

consumption. Increasing performance can lead to higher 

power usage, and vice versa. These trade-offs are crucial 

considerations in the design of embedded systems. 

9. VLSI Architectures for Edge AI and IoT 

9.1 Tailoring VLSI Solutions to Edge AI: 

Edge AI involves deploying artificial intelligence and deep 

learning models on local devices or "at the edge" rather than 

relying on cloud-based processing. Customizing VLSI 

solutions for edge AI means designing hardware to meet the 

specific requirements of low-latency, real-time, and on-device 

AI applications. This may involve optimizing for power 

efficiency, real-time processing, and the unique demands of 

edge AI use cases such as autonomous vehicles, robotics, and 

smart surveillance [24]. 

9.2 IoT Devices and Their Deep Learning Needs: 

Internet of Things (IoT) devices encompasses a wide range of 

applications and are often characterized by their small form 

factor, limited computational resources, and connectivity to 

the internet. Many IoT devices benefit from efficient deep 

learning solutions for tasks like sensor data analysis, anomaly 

detection, and local decision-making. Custom VLSI 

architectures play a crucial role in enabling deep learning on 

IoT devices by addressing the unique challenges of 

connectivity, power efficiency, and real-time processing in 

IoT applications. 

10. Future Research Directions 

Future research directions in VLSI architectures for deep 

learning in embedded systems encompass a multifaceted 

approach, including addressing unresolved challenges like 

balancing performance and power efficiency, exploring 

opportunities for innovation through novel quantization and 

sparsity techniques, and staying abreast of emerging trends, 

such as neuromorphic computing and ethical considerations, 

to foster continued advancement in the field and enhance the 

efficiency of embedded systems for deep learning 

applications. 

11. Conclusion 

The field of VLSI architectures for deep learning in embedded 

systems has made significant strides, offering promising 

solutions to address the challenges of deploying efficient 

artificial intelligence at the edge, and future endeavors should 

focus on resolving remaining issues, fostering innovation, and 

adapting to emerging trends to unlock the full potential of 

embedded deep learning. 
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