

# **Erudite Journal of Engineering Technology and Management Sciences**

Vol. 1, No. 1, September, 2021, pp. 11-14

Journal homepage: http://www.ejetms.com

# **Experimental Investigation on Domestic Refrigerator Providing Subcooling by using Eco Friendly Refrigerant**

Siddavatam Naresh Kumar Reddy1\*

<sup>1</sup> Research Scholar, Mechanical Engineering Department, NIT, Srinagar, 190006, India

Corresponding Author Email: nareshkumar\_2017@nitsri.net

Received: 18 June 2021

Accepted: 01 September 2021

#### Keywords:

refrigerant, cop, gwp, vapor compression, refrigeration

### **ABSTRACT**

Domestic refrigerators using different refrigerants such as R11, R12, NH<sub>3</sub>, CO<sub>2</sub>, etc. The major problems facing these refrigerants are environmental impact, toxicity, flammability, and high pressure, making them more dangerous than other refrigerants according to environment and safety issues. Present R134a refrigerant using in domestic refrigerators because of their thermal properties, but it may be harmful to human health. So, isobutane (R600a) is a better replacement of R134a because it is ecofriendly than all other refrigerants. The current work focuses on increasing the vapor compression refrigeration system's performance by providing a 150 cm length of a subcooling coil for different (R134a and R600a) refrigerants. The results showed that the refrigeration system's sub-cooler enhanced system performance by reducing the compressors' work input and increasing refrigeration capacity. R600a showed better performance than R134a refrigerant at all conditions but took care of R600a refrigerant because of its explosive nature.

## 1. INTRODUCTION

Most domestic refrigerators in India used R-134a as a refrigerant because of its good thermo physical and thermodynamic properties. R-134a refrigerant major disadvantage is high global warming potential (GWP). The major problems facing this refrigerant is environmental impact, toxicity, flammability, and high pressure, making them more dangerous than other refrigerants according to environment and safety issues. Hydrofluorocarbons better alternative to chlorofluorocarbons (CFC) replacement because it has global potential, but it less than CFC. Present refrigerators are primary energy consuming domestic appliance in household purpose [1-6].

Ching-Song et al. [7] conducted experiments on a domestic refrigerator by using a mixture of isobutane and propane as a refrigerant. It reduced the 4.4% of energy consumption and 40% of weight contrasted with R134a. The faster change of cabin temperature and also ON time ratio by using hydrocarbon mixture as a refrigerant in domestic refrigerator correlated with R134a [8]. Sattar et al. [9] investigated the effects of different hydrocarbons as refrigerants used in a domestic refrigerator. The results revealed that R290 refrigerant not as a replacement of R134a because it operated at high temperature. R600a refrigerant better alternative of replacement of R134a because it has desirable characteristics of discharge temperature, operating pressure and mass flow rate. Joybari et al. [10] investigated the effects of a domestic refrigerator with different refrigerants. The result revealed that

the optimum condition of total exergy destruction was 45.05% of R600a refrigerant of the household refrigerator.

Previous studies reported that R600a refrigerant showed better performance than R134a in household refrigerators. The main objective of this work is to investigate the effects of R134a and R600a as refrigerants used in a domestic refrigerator by providing subcooling with existing and new system with air and water cooling.

### 2. MATERIALS AND METHODS

Refrigerants of R-134a and R-600a bought from Tulsi Refrigerants, Secunderabad, Telangana. Table 1 illustrates the properties of refrigerants.

#### 2.1 Experimental Setup

Figure 1. illustrated the experimental setup of the vapor compression refrigeration system with a subcooling coil. The VCR system's main components are the compressor, condenser, subcooling coil, throttle valve, and evaporator.

The compressor compresses the low-pressure gas refrigerant into high pressure liquid refrigerant. This high-pressure liquid refrigerant is entering into the condenser. It releases the heat into the atmosphere, and high-pressure low temperature liquid refrigerant enters into the subcooling coil. It further decreases the temperature of the liquid refrigerant, and it enters into the throttle valve. It reduces the pressure of

the liquid refrigerant, and it enters into the evaporator. The evaporator absorbs the heat, and it converts lower pressure liquid refrigerant into lower pressure gas refrigerant, and it enters the compressor. This cycle repeats with all refrigerants.

Table 1: Properties of refrigerants

| REFRIGERANT                                                        | R600a        | R134a                              |
|--------------------------------------------------------------------|--------------|------------------------------------|
| Name                                                               | Isobutane    | 1.1.1.2-Tetra-<br>flouro-ethane    |
| Formula                                                            | $(CH_3)_3CH$ | CF <sub>3</sub> -CH <sub>2</sub> F |
| Critical temperature (°C)                                          | 135          | 101                                |
| Molecular weight (Kg/kmol)                                         | 58.1         | 102                                |
| Normal boiling point (°C)                                          | -11.6        | -26.5                              |
| Pressure at -25°C in bar (absolute)                                | 0.58         | 1.07                               |
| Liquid density at -<br>25°C (Kg/L)                                 | 0.60         | 1.37                               |
| Vapor density at t <sub>0</sub> -<br>25/+32°C (Kg/m <sup>3</sup> ) | 1.3          | 4.4                                |
| Volumetric capacity at -25/55/32°C in KJ/m <sup>3</sup>            | 373          | 658                                |
| Enthalpy of vaporization at -25°C                                  | 376          | 216                                |
| in KJ/Kg                                                           |              |                                    |
| Pressure at +20°c in bar (absolute)                                | 3.0          | 5.7                                |



**Figure 1.** Vapour Compressor Refrigeration System with Sub Cooling Coil

The copper tube of 150 cm length and 1/4" inch diameter used as a subcooling coil by providing subcooling in the VCR system. Figure 2 illustrates the subcooling coil used in this system.

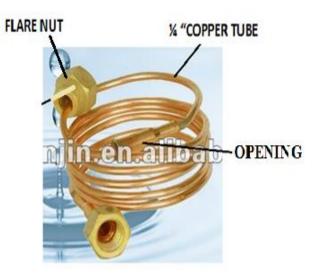



Figure 2. Subcooling Coil

### 3. RESULTS AND DISCUSSION

The current work focuses on increasing the vapor compression refrigeration system's performance by providing a 150 cm length of a subcooling coil for different (R134a and R600a) refrigerants. Table 2 illustrated the results of using R-134a refrigerant with different systems. Table 3 showed the results of using R-600a refrigerant with different systems.

## 3.1 Net Refrigeration Effect

Figure 3 shows the refrigeration effect for refrigerants R-134a and R600a for existing and new systems with subcooling coil in air and water. The net refrigeration effect increases with subcooling compared to the existing system because subcooling reduces the liquid's flashing during evaporation and increases its refrigeration effect. From figure 3, It showed that high refrigeration effect by using R-600a refrigerant contrasted with R-134a.

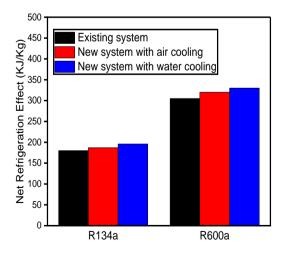



Figure 3. Net refrigerating effect of different refrigerants

Table 2: Effects of using R-134a refrigerant with different systems

| S.No. | Parameters                                              | Existing<br>System | New<br>System With<br>Air Cooling | New<br>System With<br>Water<br>Cooling |
|-------|---------------------------------------------------------|--------------------|-----------------------------------|----------------------------------------|
| 1.    | Net refrigerating effect (KJ/Kg)                        | 180                | 187                               | 196                                    |
| 2.    | Coefficient of Performance (COP)                        | 9.474              | 11.69                             | 12.25                                  |
| 3.    | Mass flow rate to obtain 1 TR (Kg/min)                  | 1.167              | 1.123                             | 1.0714                                 |
| 4.    | Work of Compression (KJ/Kg)                             | 19                 | 16                                | 16                                     |
| 5.    | Heat Equivalent of work of compression per TR ( KJ/min) | 22.173             | 17.968                            | 17.1424                                |
| 6.    | Compressor Power (KW)                                   | 0.37               | 0.299                             | 0.286                                  |
| 7.    | Heat to be rejected in condenser (KJ/Kg)                | 199                | 203                               | 212                                    |
| 8.    | Heat Rejection per TR (KJ/min)                          | 232.23             | 227.97                            | 227.14                                 |
| 9.    | Heat Rejection Ratio                                    | 1.106              | 1.086                             | 1.082                                  |

Table 3: Effects of using R-600a refrigerant with different systems

| S. No. | Parameters                                             | <b>Existing System</b> | New System<br>With Air<br>Cooling | New System<br>With Water<br>Cooling |
|--------|--------------------------------------------------------|------------------------|-----------------------------------|-------------------------------------|
| 1.     | Net refrigerating effect (KJ/Kg)                       | 305                    | 320                               | 330                                 |
| 2.     | Coefficient of Performance (COP)                       | 10.167                 | 12.8                              | 13.2                                |
| 3.     | Mass flow rate to obtain 1 TR (Kg/min)                 | 0.688                  | 0.656                             | 0.6364                              |
| 4.     | Work of Compression (KJ/Kg)                            | 30                     | 25                                | 25                                  |
| 5.     | Heat Equivalent of work of compression per TR (KJ/min) | 20.656                 | 16.4                              | 15.9                                |
| 6.     | Compressor Power KW                                    | 0.344                  | 0.273                             | 0.265                               |
| 7.     | Heat to be rejected in condenser (KJ/Kg)               | 335                    | 345                               | 355                                 |
| 8.     | Heat Rejection per TR (KJ/min)                         | 230.48                 | 226.32                            | 225.9                               |
| 9.     | Heat Rejection Ratio                                   | 1.098                  | 1.077                             | 1.076                               |

## 3.2 Compressor Power

Figure 4 shows the compressor power for refrigerants R-134a and R600a for both existing and new systems with subcooling coil in air and water. The mass flow rate is less with the subcooling coil, so compressor power decreased with the proposed system. Figure 4 showed less compressor power by using R-600a refrigerant with different systems contrasted with R-600a.

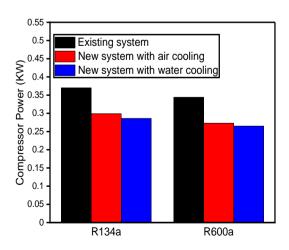



Figure 4. Compressor power of different refrigerants

## 3.3 Compressor Power

Figure 5 shows the coefficient of performance of both existing and new systems with subcooling coil in air and water with different refrigerants. The net refrigeration effect is more with the subcooling coil, so the coefficient of performance increased with the proposed system. Figure 5 showed a high coefficient of performance by using R-600a refrigerant with different systems contrasted with R-600a.

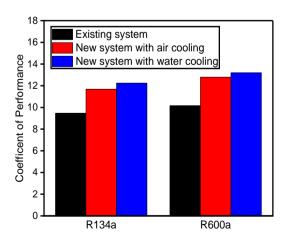



Figure 5. Coefficient of performance of different refrigerants

## 3.4 Heat Rejection

Figure 6 shows the heat rejection of both existing and new systems with subcooling in air and water with different refrigerants. Subcooling is more with a subcooling coil, so heat rejection increased with the proposed system. Figure 6 showed high heat rejection by using R-600a refrigerant with different systems contrasted with R-134a.

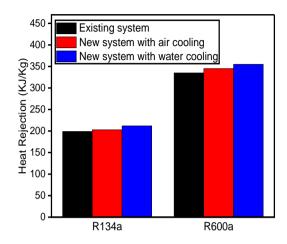



Figure 6. Heat rejection of different refrigerants

### 4. CONCLUSION

The current work focuses on increasing the vapor compression refrigeration system's performance by providing a 150 cm length of a subcooling coil for different (R134a and R600a) refrigerants. The outcomes revealed that the net refrigeration effect increases with subcooling compared to the existing system because subcooling reduces the liquid's flashing during evaporation and increases the system's refrigeration effect. The refrigeration effect increased by using R-600a refrigerant contrasted with R-134a. High coefficient of performance by using R-600a refrigerant with different systems contrasted with R-134a because of net refrigeration effect is more with subcooling coil, so the coefficient of performance increased with the proposed system. Less compressor power using R-600a refrigerant with different systems contrasted with R-600a because the mass flow rate is less with the subcooling coil, so compressor power decreased with the proposed method. High heat rejection using R-600a refrigerant with different systems contrasted with R-134a because subcooling is more with subcooling coil, so heat rejection increased with the proposed system. It concluded that R600a showed better performance than R134a refrigerant at all conditions but took care of R600a refrigerant because of its explosive nature.

## REFERENCES

[1] Tsai, W. T. (2005). An overview of environmental hazards and exposure risk of hydrofluorocarbons (HFCs). *Chemosphere*, 61(11), 1539-1547.

- [2] Johnson, E. (1998). Global warming from HFC. Environmental Impact Assessment Review, 18(6), 485-492.
- [3] Ashford, P., Clodic, D., McCulloch, A., & Kuijpers, L. (2004). Emission profiles from the foam and refrigeration sectors comparison with atmospheric concentrations. Part 2: results and discussion. *International Journal of Refrigeration*, 27(7), 701-716.
- [4] McCulloch, A., Midgley, P. M., & Ashford, P. (2003). Releases of refrigerant gases (CFC-12, HCFC-22 and HFC-134a) to the atmosphere. *Atmospheric Environment*, *37*(7), 889-902.
- [5] McCulloch, A., & Lindley, A. A. (2003). From mine to refrigeration: a life cycle inventory analysis of the production of HFC-134a. *International Journal of Refrigeration*, 26(8), 865-872.
- [6] Radermacher, R., & Kim, K. (1996). Domestic refrigerators: recent developments. *International journal of refrigeration*, 19(1), 61-69.
- [7] Jwo, C. S., Ting, C. C., & Wang, W. R. (2009). Efficiency analysis of home refrigerators by replacing hydrocarbon refrigerants . *Measurement*, 42(5), 697-701.
- [8] Mani, K., & Selladurai, V. (2008). Experimental analysis of a new refrigerant mixture as drop-in replacement for CFC12 and HFC134a. *International journal of thermal sciences*, 47(11), 1490-1495.
- [9] Sattar, M. A., Saidur, R., & Masjuki, H. H. (2007). Pure Butane as refrigerant in domestic refrigerator freezer. *Greater Mekong Subregion Academic And Research Network*, 2, 29-34.
- [10] Tsai, W. T. (2005). An overview of environmental hazards and exposure risk of hydrofluorocarbons (HFCs). *Chemosphere*, 61(11), 1539-1547.

# CC-BY

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read) which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.