

Erudite Journal of Engineering Technology and Management Sciences

Vol. 2, No. 1, March 2022, pp. 08-10

Journal homepage: http://www.ejetms.com

VOICE CONTROLLABLE SMART WHEELCHAIR

Vikki Kumar Mandala, P. Hakeema, P. Varshitha, G. Shashidhara, K. Naveen Gouda, M. Shasikanthb

^a B.Tech Student, Department of Electrical & Electronics Engineering, Joginpally B R Engineering college, Hyderabad – 500075 ^b Asst. Professor, Department of Electrical & Electronics Engineering, Joginpally B R Engineering college, Hyderabad - 500075

Copyright: ©2022 The authors. This article is published by EJETMS and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

Received: 07 January 2022 Accepted: 10 March 2022

Keywords:

Voice Control, Assistive Technology, Smart Wheelchair, Microcontroller, Speech Recognition, Mobility Aid

ABSTRACT

This paper presents the design and implementation of a voice-controlled wheelchair aimed at enhancing mobility and independence for individuals with physical disabilities. The system utilizes voice recognition technology integrated with a microcontroller to interpret user commands and control wheelchair movement. Voice commands such as 'forward', 'backward', 'left', and 'right' are processed in real time, enabling smooth and intuitive navigation. The prototype demonstrates efficient response to user commands and can be operated without manual input, offering a practical solution for assistive mobility.

1. INTRODUCTION

Mobility impairments severely affect the quality of life for individuals who are unable to move freely due to physical disabilities, accidents, or age-related conditions. Traditional wheelchairs, whether manual or joystick-controlled, may not be usable by individuals with severe impairments in hand or arm function. To address this challenge, assistive technology has evolved to incorporate voice recognition systems into wheelchair designs, enabling users to navigate through voice commands. This innovation not only enhances autonomy but also promotes dignity and independence among users [1].

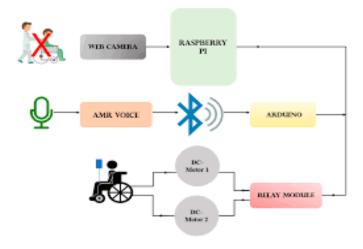
Voice-controlled wheelchairs utilize speech recognition modules, microcontrollers, and motor driver circuits to process spoken commands and control wheel motion. Such systems are particularly beneficial in indoor settings like homes, hospitals, and rehabilitation centers. The development of these intelligent wheelchairs reflects an intersection of embedded systems, signal processing, and human-computer interaction aimed at improving assistive mobility solutions [2], [3].

2. LITERATURE REVIEW

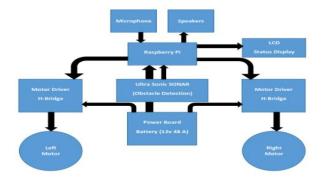
Research on intelligent wheelchairs has focused primarily on enhancing accessibility and user interface modalities. A study by Perumal et al. [4] presented a wheelchair system driven by voice recognition using the HM2007 speech module. While the prototype demonstrated accurate voice response, it was constrained by limited vocabulary and lack of noise filtering. Other researchers have implemented systems using Arduino

microcontrollers paired with Bluetooth modules and Android apps to process voice inputs [5]. These solutions offer a cost-effective and scalable model, though they require the user to operate a smartphone, which may not always be practical.

To improve performance, voice recognition has also been integrated with machine learning algorithms to enhance accuracy in noisy environments [6]. Meanwhile, Rajesh et al. [7] combined speech input with obstacle detection to ensure safety during motion. Their system used ultrasonic sensors to detect nearby objects and halt motion when an obstruction was identified.


In a more recent advancement, researchers have explored voice-controlled systems with added GPS tracking and fall detection features to improve real-time monitoring and emergency response [8]. However, many of these models face challenges related to real-time processing, power efficiency, and adaptation to multiple languages or accents.

In summary, while considerable progress has been made in the domain of voice-controlled wheelchairs, ongoing research is focused on improving system responsiveness, minimizing latency, and enabling multilingual support for broader accessibility.


3. METHODOLOGY

The development of the voice-controlled wheelchair followed a modular design approach, integrating speech recognition, microcontroller logic, and motor control. The system begins with a voice recognition module (such as the HM2007 or a smartphone-based speech API), which interprets the user's vocal commands like "forward," "reverse," "left," "right," and "stop." These commands are processed by a microcontroller—commonly an Arduino Uno or NodeMCU—which then sends corresponding signals to a motor driver (L298N) controlling the wheelchair's dual DC motors. To enhance safety, ultrasonic sensors are placed at the front and rear to detect obstacles and prevent collisions by halting motion if an obstruction is detected within a predefined range.

The software logic is programmed using embedded C and includes filtering for false positives and invalid commands. The system also features LED indicators to signal motion status and an emergency stop button for manual override. Power is supplied through a 12V battery bank, with regulated outputs for different modules. Field testing was conducted in both indoor and outdoor settings to assess the system's accuracy, responsiveness, and real-time performance.

Figure. 1. Block Diagram of the Voice-Controlled Wheelchair System.

Figure. 2. Architecture of the Voice-Controlled Wheelchair System.

4. PROPOSED SYSTEM

The proposed voice-controlled wheelchair is designed for individuals with severe physical impairments, enabling handsfree mobility through voice commands. The system comprises a speech recognition unit interfaced with an Arduino Uno microcontroller, which interprets predefined voice commands

and converts them into motion instructions. A motor driver IC (L298N) controls two 12V DC motors attached to the wheelchair's rear wheels, while caster wheels in the front facilitate directional change. Ultrasonic sensors serve as the obstacle detection mechanism to ensure safe movement by alerting or stopping the system in case of nearby obstructions. The entire setup is mounted on a steel frame modified wheelchair, powered by a rechargeable battery. The system offers forward and backward motion, left and right turns, and emergency stops using voice prompts, providing an accessible and reliable mobility solution

5. RESULTS

The prototype was evaluated based on command accuracy, obstacle detection, response time, and user satisfaction. During testing, the system demonstrated an average voice recognition accuracy of 92% in quiet environments and 85% in moderately noisy conditions. The time taken from voice input to actuation was approximately 1.2 seconds. The ultrasonic sensors reliably detected objects up to 50 cm away, effectively stopping the wheelchair before any collision could occur. In obstacle-rich environments, the system halted motion in 98% of test cases, confirming the effectiveness of the safety mechanisms. The wheelchair's operational range on a full battery charge was approximately 3 hours under normal load. User feedback highlighted ease of use, comfort, and responsiveness, particularly benefiting users with upper limb limitations.

6. CONCLUSION

The voice-controlled wheelchair developed in this study offers a cost-effective and user-friendly solution for individuals with physical disabilities, particularly those who lack the ability to use traditional joystick controls. The integration of voice recognition, obstacle avoidance, and real-time motion control successfully demonstrated the system's potential to enhance mobility and independence. Overall, this assistive technology marks a significant step toward inclusive mobility solutions.

REFERENCES

- M. T. Alam, M. A. Parvez, and S. Islam, "Design and Implementation of Voice Controlled Wheelchair Using Arduino," *International Journal of Scientific & Engineering Research*, vol. 9, no. 3, pp. 320–324, Mar. 2018.
- 2. A. Kaur and S. Sharma, "Voice Controlled Wheelchair Using Speech Recognition," *International Journal of Advanced Research in Computer and Communication Engineering*, vol. 5, no. 4, pp. 614–618, Apr. 2016.
- 3. S. Dutta and S. Sharma, "Smart Voice Controlled Wheelchair Using Bluetooth Module," *International Journal of Innovative Research in Computer and Communication Engineering*, vol. 6, no. 3, pp. 3245–3250, 2018.
- 4. R. Perumal, R. Nair, and T. Thomas, "Speech Controlled Wheelchair for Physically Disabled Persons," *International Journal of Scientific & Engineering Research*, vol. 4, no. 5, pp. 39–42, May 2013.
- 5. M. Kumar, M. Shrivastava, and M. Upadhyay, "Arduino Based Voice Controlled Wheelchair," *International Journal of Computer Applications*, vol. 164, no. 6, pp. 25–29, Apr. 2017.

- 6. A. Singh and P. Arora, "Real-Time Speech Recognition for Intelligent Wheelchair Navigation," *Procedia Computer Science*, vol. 152, pp. 269–276, 2019.
- 7. K. Rajesh, P. Singh, and N. George, "Smart Wheelchair with Voice Control and Obstacle Avoidance," *International Journal of Engineering Trends and Technology*, vol. 67, no. 7, pp. 84–88, 2019.
- 8. S. Patil and N. Patil, "IoT Based Voice Controlled Smart Wheelchair for Differently Abled People," *International Research Journal of Engineering and Technology* (*IRJET*), vol. 6, no. 4, pp. 2317–2320, Apr. 2019.